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Deforestationin the tropics has been a major concern in conservationscience for more
than two decades.A standardexplanationis populationpressure,argued throughdescriptive
statistical summaries, but the connection between local population and forest exploitation
has not been clearly addressed from a formal modeling perspective. We implement such
modeling here using a two-stage speci�cation. At the �rst stage, we provide a spatial model
for population counts. At the second stage, we provide a conditional spatial model for
land use given population. A critical problem is misalignment. The population counts are
recordedat various administrativeunit levels. In particular,we work with town-level counts.
The land-use classi�cations are from remotely sensed satellite images and are provided at
a 1-km £ 1-km pixel level. We propose a methodology to implement regressions in this
situation. The motivating data are obtained for the tropical wet forest on the eastern coast
of Madagascar.This is a designated hotspot rainforest featuring high species diversity and
high endemism. A fairly detailedanalysis connecting land use with populationdata for this
region is presented.

Key Words: Binomial regression; Conditionally autoregressive prior; Markov chain
Monte Carlo; Poisson regression; Rasterization; Spatial resolution.

1. INTRODUCTION

Deforestation in the tropics has been a major concern in conservation science for more
than 20 years. Estimates of tropical deforestation over the past few decades have shown an
alarming acceleration in forest lost. Concern has focused on the massive loss of biodiversity
in the rainforest biome, which is thought to contain more species than all other biomes
together (Whitmore 1992). The vast majority of rainforest species remain undescribed. The
other major concern is the loss of ecosystem services provided by the world’s rainforests.
For example, some believe that rainforests play a critical role as a global carbon sink, thus

Deepak K. Agarwal is a member of AT&T Shannon Research Labs, Florham Park, NJ 07932-0971. Alan E.
Gelfand is a Professor in the Department of Statistics and John A. Silander, Jr., is a Professor in the Department
of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269.

c® 2002 American Statistical Association and the International Biometric Society
Journal of Agricultural, Biological, and Environmental Statistics, Volume 7, Number 3, Pages 420–439
DOI: 10.1198/108571102348

420



INVESTIGATING TROPICAL DEFORESTATION 421

providing a buffering capacity for atmospheric CO2 and hence global climate change.
The standard explanation for deforestation in the tropics has been rapid population

growth,associatedpoverty,andconsequentialenvironmentaldestruction(Leach and Mearns
1988; Richards and Tucker 1988; Mercier 1991; Brown and Pearce 1994; Sponsel, Head-
land, and Bailey 1996). In selected areas, commercial exploitation and clear cutting are
also important causes of deforestation (Torsten 1992). However, conventional explanations
for forest loss and environmental degradation have recently been questioned as too sim-
plistic, misleading, or general. In the absence of a clear understanding of the connection
between local populations and forest exploitation, it is not surprising that conservation and
reforestation schemes have had only modest success (e.g., Olson 1984).

The goal of this article is to develop, �t, and interpret suitable stochastic models that
can help clarify the foregoing connections. This is a rather challenging undertaking on
several accounts. First, there are numerous factors that have been linked to land use and
deforestation. These factors can be socioeconomic, e.g., population growth or economic
growth;physical,e.g., topographyorproximityof rivers and roads;governmentintervention,
e.g., agriculture and/or forestry policies; or external, e.g., demand for exports or �nancing
conditions. For any given region, typically only some of this information is available.

Second, there is no well-accepted notion of a response variable. In some cases, defor-
estation rates or forest areas are used. Deforestation rates are typically calculated over time
spans that are limited. Areas are usually obtained from cross-sectional studies of different
countries or different regions within countries. The alternative we adopt is to partition the
study region into disjoint areal units and then attach a variable that is a land-use classi�-
cation to each unit. Of course, such a variable is not uniquely de�ned in terms of number
of and de�nition of classi�cations. Additionally, in describing forest cover, classi�cations
may be partly but not entirely ordered.

Third, the explanatory variables and the response variables are typically measured in
different areal units.For instance, in the dataset we investigate, the responsevariable is land-
use classi�cation, which is ascribed to 1-km £ 1-km pixels. On the other hand, population
is recorded at various administrative levels. In our case, we use town-level data, which are
considered to be the most reliable. How does one develop a regression for data collected on
spatially misaligned areal units?

Finally, land use and deforestation are inherently spatial processes. So, too, are many
of the explanatory variables, such as population counts. Satisfying stochastic as well as
mechanistic modeling should capture association between measurements on areal units in
terms of proximity of these units. Introduction of suitable sets of spatial random effects
provides one way to accomplish this. A further advantage is that such effects can serve as
spatial surrogates for unmeasured or unavailable covariates.

Little formal modeling of deforestation was attempted until the 1980s (Granger 1998).
Descriptive statistical summaries of land use or forest area obtained for certain regions at
certain time points were customary. Most of the ensuing statistical work that has appeared
has been based on standard multiple linear regression models relating deforestation rates
or forest area to a laundry list of potential explanatory variables.
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In fact, Granger listed at least 28 different variables that have been linked directly or
indirectly to deforestation. In these studies, it appears that the major objective has been
to maximize R2; models with 8 or more explanatory variables have been put forward.
None of these models are explicitly spatial in nature. The little work with a spatial �avor
that does exist has arisen from an econometric perspective as in, e.g., Palloni (1992) or
Chomitz and Gray (1996). These models assume that land use will be devoted to the activity
yielding the highest rent. The modeling connects output prices to input prices through
production functions, with the spatial aspect introduced solely by relating these prices to
market distance.

Our approach to addressing the connection between local population and forest ex-
ploitation is to formulate a model for the joint distribution of these two variables, given
other explanatory variables, that is explicitly spatial. Recalling the incompatibility of the
data layers (again, land use is obtained for 1-km £ 1-km pixels while population counts
are obtained at the town level), we overlay the town-level map on the pixel-level map and
modify town boundariesso that each pixel is contained in one and only one town. Upon such
rasterization, we implement the joint modeling at the pixel level. In particular, we provide
this joint distribution by modeling the unobserved pixel-level population counts and then
the conditional distribution of land use given the associated count. The model for the latent
population counts induces a model for the observed counts. With the inclusion of two sets
of spatial effects, one associated with the town population counts model, the other with the
pixel-level land-use model, a multilevel hierarchical model results.

We indicate how such models can be straightforwardly �tted using Gibbs sampling
(Gelfand and Smith 1990), thus enabling full inference regarding all of the modeling levels.
The proposed misalignment approach extends recent work of Mugglin and Carlin (1998)
and Mugglin, Carlin, and Gelfand (2000). In the present context, the other explanatory
variables we employ are also measured at the pixel level. However, in general, rasterization
of misaligned data layers to a common set of pixels and then modeling the joint distribution
of the variables at this level provides a basis for introduction of further incompatible data
layers.

The dataset we work with was collected for a rainforest in eastern Madagascar. Mada-
gascar has been designated as an area of high priority for conservation efforts (Mittermeier
1988; Davies, Heywood, and Hamilton 1994). The eastern tropical wet forest is a global
rainforest hotspot (Meyers 1991). In Section 2, we present a detailed description of this
dataset as well as some preliminary analysis. In Section 3, we elaborate on the modeling
described above. Section 4 summarizes and interprets our analysis of the dataset. Finally,
Section 5 describes several anticipated re�nements to the dataset and how the modeling of
Section 3 will have to be modi�ed.

2. THE DATASET

Madagascar is an area of the world designated as particularly high priority for con-
servation efforts. It is recognized as one of seven megadiversity countries in the world
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(Mittermeier 1988), and the eastern tropical wet forest in Madagascar is one of 12 global
rain forest hotspots.This designationre�ects a high level of species diversity. In fact, Mada-
gascar may have up to 30% of the plant species of all of Africa but constitutes less than
2% of the area (Lowry, Schatz, and Phillipson 1997) and a high level of endemism (about
80% of the plants species are found nowhere else). At the same time, the forests in Mada-
gascar have been under tremendous threat from deforestation. As a consequence, many of
the most well-known plant and animal species are listed by the International Union for the
Conservation of Nature (IUCN) as globally threatened.

There is considerable difference of opinion as to how much of the original forest is
left, but estimates range down to as little as 10%, and perhaps only 25% of what is left is
considered primary or undisturbed forest. Of these systems, the coastal forests are the most
threatened. Estimated deforestation rates for Madagascar are quite variable, i.e., 1–5% per
year or more. Some have estimated that, within 20 years, little or no forest will remain
outside protected areas (about 1:85% of the total land surface). See Green and Sussman
(1990) for further discussion.

The focal area for this study is the tropical rainforest biome within Toamasina (or
Tamatave) Province of Madagascar. This province is located along the east coast of Mada-
gascar and includes the greatest extent of tropical rainforest on the island nation. The aerial
extent of ToamasinaProvince is roughly75;000 sq. kms. We constructed four georeferenced
GIS coverages (Geographic Information System data layers) for modeling forest cover for
the province: town boundarieswith associated1993populationcensus data, elevation,slope,
and land cover. These datasets from which we derived our coverages were all downloaded
off the Web. Details and sites are provided in the Appendix.

Working with multiple GIS data layers usually requires geocorrection. Such manipu-
lation necessarily introduces measurement error into the corrected data layers. In fact, the
accuracy of any data layer including the template layer (the one viewed as best, against
which the others are geocorrected) is not typically quanti�able. The geocorrection process,
especiallyrubbersheeting,involvessubjectivityand also introducesunquanti�able error. Ex-
plicit assessment of error associated with any GIS geocorrection requires ground truthing,
repeated sampling, and so on. General methodology is a �eld unto itself and would be a
topic of a different article. Quanti�cation in a particular context would obviously depend
on the region and choice of data layers. Here we only note that considerable effort has been
expended to provide the best visual alignment of layers and that our proposed analysis only
attempts to relate the resulting variables.

Ultimately, the total number of towns in our dataset was 159 and the total number of
pixels was 74,607. For analysis at a lower resolution, we aggregated each of the above
�nal 1-km raster layers into 4-km pixels using ERDAS Imagine Decompose module. For
the elevation and slope layers, we obtained average values from the composite 16 pixels
for each of the new, larger pixels. For the town boundary layer, we used majority rule to
assign each pixel to a town. In so doing, two towns were lost as being less than 16 km2 in
area. For the 4-km £ 4-km forest raster layer, we used the number of forested subpixels
(0; 1; 2; : : : ; 16).
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Figure 1. Northern and southern regions within the study region; gray-scale populationoverlaid.

Figure 1 shows the town-level map for the 159 towns in the study region. In fact,

there is an escarpment in the western portion where the climate differs from the rest of the

region. It is a seasonally dry grassland/savanna mosaic. Also, the northern part is expected

to differ from the southern part. The north has fewer population areas with large forest

patches, while the south has more villages with many smaller forest patches and more

extensive road development, including commercial routes to the national capital west of

the study region. (See also Figure 12 in this regard.) Hence, we excluded the western

towns and introduced between north and south a transition region (to provide separation

of north and south spatial effects). Finally, we arrived at the illustrative north and south

regions, which are identi�ed in Figure 1 with the excluded white areas being a combination

of grassland/savanna and transition zone. In the north, there are 50 towns with total area
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Figure 2. Histogram for population for the 159 towns in the study area.

26,432 km2 and total population 707,786; in the south, there are 66 towns with total area

25,168 km2 and total population 664,066. In Figure 1, gray-scale town population data is

overlaid on these regions. In addition,Figure 2 provides a histogram of this populationdata

for all 159 towns. In Section 4, we �t the models mentioned in the introduction to each

region separately and then make comparisons.

Figure 3 provides the rasterized (at 1-km £ 1-km resolution) north and south regions.

The land-cover classi�cation is overlaid. The proportion of forest in the north is :7055;

in the south, it is :6448. At the 4-km £ 4-km resolution, the distribution of the land-use

variable is shown in Figure 4. Similarly, Figure 5 provides gray-scale maps for elevation

for the north and south, while Figures 6 provides gray-scale maps for slope for the north

and south.

While the binary map in Figure 3 shows spatial pattern in land use, we develop an

additionaldisplay to provide quanti�cation.For data on a regular grid or lattice,we calculate

binary analoguesof the sample autocovariancesusing the 1-km £ 1-km resolutionwith four

illustrative directions: east (E), northeast (NE), north (N), and northwest (NW). Relative

to a given pixel, we can identify all pixels in the region in a speci�ed direction from that

pixel and associate with each a distance (Euclidean distance centroid to centroid) from the

given pixel. Pairing the response at the given pixel (X) with the response at a directional
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Figure 3. Rasterized north and south regions (1 km £ 1 km) with binary land-use classi�cation overlaid.

neighbor (Y ), we obtain a correlated binary pair. Collecting all such (X; Y ) pairs at a

given direction/distance combination yields a 2 £ 2 table of counts. The resultant log-odds

ratio measures the association between pairs in that direction at that distance (note that,

if we followed the same procedure but reversed direction, e.g., changed from E to W, the

corresponding log-odds ratio would be unchanged).

In Figure 7, we plot log-odds ratio against direction for each of the four directions.

Note that the spatial association is quite strong, requiring a distance of at least 40 km before

it drops to essentially zero. This suggests that we do not lose much spatial information if we

work with the lower (4-km £ 4-km) resolution. In exchange, we obtain a richer response

variable (17 ordered levels) and a substantial reduction in number of pixels (1,652 in the

north region, 1,534 in the south region) to facilitate model �tting.
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Figure 4. Distribution of number of forested pixels (out of 16) at the 4-km £ 4-km resolution for the north and
south regions.

3. MODELING DETAILS

We model the joint distribution of land use (L) and population count (P ) at the pixel

level. Let Lij denote the land-use value for the jth pixel in the ith town and let Pij denote

the population count for the jth pixel in the ith town. Again, the Lij are observed, but only

Pi: = §j Pij are observed at the town level. We collect the Lij and Pij into town-level

vectors Li and P i and overall vectors L and P .

As described in Section 2, we also observe at each pixel an elevation, Eij , and a slope,

Sij . To capture spatial association between the Lij , we introduce pixel-level spatial effects

’ij ; to capture spatial association between the Pi:, we introduce town-level spatial effects

¯i, i.e., the spatial process governing land use may differ from that for population.
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We seek to specify the joint distribution, f(L; P j fEijg; fSijg; f’ijg; f¯ig). We

factor this joint distribution as

f(P j fEijg; fSijg; f¯ig)f (L j P ; fEijg; fSijg; f’ijg): (3.1)

We condition in this fashion because one of our objectives is to explain the effect

of population on land use. Of course, we do not assert causality and recognize that, in a

different context, the conditioning could be reversed. (Also, implicit in (3.1) is a marginal

speci�cation for L and a conditional speci�cation for P j L.)

Figure 5. Gray-scale elevation maps for the north and south regions.
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Turning to the �rst term in (3.1), we assume that the Pij ’s are conditionallyindependent

given the E ’s, S ’s, and ¯’s. In fact, we assume Pij ¹ Poisson(¶ij), where

log ¶ij = �0 + �1Eij + �2Sij + ¯i: (3.2)

As a result, Pi: ¹ Poisson(¶i:), where log ¶i: = log §j ¶ij = log §j exp(�0 + �1Eij +

�2Sij + ¯i). In other words, the Pij inherit the spatial effect associated with Pi:. Also,

fPijg j Pi: ¹ multinomial(Pi:; f®ijg), where ®ij = ¶ij=¶i:.

Figure 6. Gray-scale slope maps for the north and south regions.
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Figure 7. Land-use log-odds ratio versus distance in four directions. See text for details.

In the second term in (3.1), we assume conditional independence of the Lij given the

P ’s , E ’s, S ’s, and ’’s. For the 4-km £ 4-km resolution, where Lij lies between 0 and 16,

we assume Lij ¹ binomial(16; qij), i.e., that the sixteen 1-km £ 1-km pixels that comprise

a given 4-km £ 4-km pixel are iid Bernoulli with qij such that

log

μ
qij

1 ¡ qij

¶
= ¬0 + ¬1Eij + ¬2Sij + ¬3Pij + ’ij : (3.3)

For the town-level spatial effects, we assume a conditionally autoregressive (CAR)

prior using only the adjacent towns for the mean structure, with variance ½ 2
¯ , and similarly

for the pixel effects using onlyadjacentpixels,with variance½ 2
’ [see Besag (1974) or Cressie

(1993) for further details on CAR models].

To complete the speci�cation of the hierarchical model, we require priors for ¬ , � ,

½ 2
¯ , and ½ 2

’ (when the ’ij are included). Under a binomial, with proper priors for ½ 2
¯ and

½ 2
’, a �at prior for ¬ and � will yield a proper posterior. For ½ 2

¯ and ½ 2
’, we adopt inverse

gamma priors. In particular, ½ 2
¯ ¹ IG(2; :23) and ½ 2

’ ¹ IG(2; 5:86). These speci�cations

have in�nite variance with mean roughly the sample variability in the log ^
¶i (where ^

¶i

= Pi:) and the log(q̂ij=(1 ¡ q̂ij)) (where q̂ij = Lij=16), respectively. As is customary, to

ensure identi�ability, i.e., a well-behaved posterior distribution, we impose the constraints

§i ¯i = 0 and §ij ’ij = 0. The model is �tted using Markov chain Monte Carlo and the

constraints are implemented after each iteration (see Besag, Green, Higdon, and Mengersen

1995).
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Figure 8. Graphical representation of model in (3.1)–(3.3).

4. ANALYSIS OF THE DATA

At the 4-km £ 4-km pixel scale, we �tted two versions of the model in Section 3.

In particular, we consider (3.3) with the ’ij ’s (model 2) and without them (model 1). We

�tted models 1 and 2 separately for the northern and southern regions. The results are

summarized in Table 1 with point (posterior median) and interval (95% equal tail) estimate.

The population-count model results are little affected by the inclusion of the ’ij . For the

land-use model, this is not the case. Interval estimates for the �xed effects coef�cients

are much wider when the ’ij are included. This is not surprising from the form in (3.3).

Though the Pij are modeled and are constrained by summation over j and though the ¿ij

are modeled dependently through the CAR speci�cation, since neither is observed, strong

collinearity between the Pij and ¿ij is expected, in�ating the variability of the ¬’s.

Speci�cally, for the population-countmodel in (3.2), in all cases, the elevation coef�-

cient is signi�cantly negative;higher elevationyields smaller expected population.Interest-

ingly, the elevation coef�cient is more negative in the north. The slope variable is intended

to provide a measure of the differential in elevation between a pixel and its neighbors.

However, a crude algorithm is used within the Environmental Systems Research Institute

(ESRI) software for its calculation, diminishing its value as a covariate. Indeed, higher

slope would typically encourage lower expected population. Although this is roughly true

for the south under either model, the opposite emerges for the north. The inference for the
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Table 1. Parameter Estimation (Point and Interval Estimates) for Models 1 and 2 for the Northern and
Southern Regions (See Text for Details)

Model

M1 M2

Region North South North South

Population model parameters

�1 (elevation) ¡.577 ¡.245 ¡.592 ¡.176
(¡.663, ¡.498) (¡.419, ¡.061) (¡.679, ¡.500) (¡.341, .019)

�2 (slope) .125 ¡.061 .127 ¡.096
(.027, .209) (¡.212, .095) (.014, .220) (¡.270, .050)

½
¯2 1.32 1.67 1.33 1.71

(.910, 2.04) (1.23, 2.36) (.906, 1.94) (1.22, 2.41)

Land use model parameters
¬1 (elevation) .406 ¡.081 .490 .130

(.373, .440) (¡.109, ¡.053) (.160, .857) (¡.327, .610)
¬2 (slope) .015 .157 .040 ¡.011

(¡.013, .047) (.129, .187) (¡.085, .178) (¡.152, .117)
¬3 £ 10¡ 4 ¡5.10 ¡3.60 ¡4.12 ¡8.11

(¡5.76, ¡4.43) (¡4.27, ¡2.80) (¡7.90, ¡.329) (¡14.2, ¡3.69)
½’2 — — 6.84 5.85

(6.15, 7.65) (5.23, 6.54)

town-level spatial variance component ½ 2
¯ is consistent across all models. Homogeneity of

spatial variance for the population model is acceptable.

Turning to (3.3), in all cases, the coef�cient for population is signi�cantly negative.

There is a strong relationship between land use and population size; increased population

increases the chance of deforestation. The elevation coef�cients are mixed with regard to

signi�cance. However, for both models 1 and 2, the coef�cient is always at least :46 larger

in the north. Elevation more strongly encourages forest cover in the north than in the south.

This is consistent with the discussion of the preceding paragraph but, apparently, the effect

is weaker in the presence of the population effect. Again, the slope covariate provides

inconsistent results but is insigni�cant in the presence of spatial effects. Inference for the

pixel-level spatial variance component does not criticize homogeneity across regions. Note

that ½ 2
’ is signi�cantly larger than ½ 2

¯ . Again, this is expected. With a model having four

populationparameters to explain 3,186 qij ’s as opposed to a model having three population

parameters to explain 115 ¶i ’s, we would expect much more variability in the ’ij ’s than in

the ¯i’s.

To clarify the spatial picture a bit further, Figure 9 presents gray-scale maps of the

posterior means of the ’ij for the north and the south. The central interval represents effects

within :5 standard deviations from zero. Adjacent intervals are within :5 to 1:5 standard

deviationsfrom zero. First, note the presence of associationpatterns in these �gures; ’ij ’s of

similar magnitude tend to cluster. Second,’ij < (>) 0 implies that the explanatoryvariables

Eij , Sij , and Pij provide overestimation (underestimation) of qij . Comparison with Figure

4 shows that overestimation (underestimation) is more common when Lij , hence qij , is
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small (large). Similarly, Figure 10 presents gray-scale maps of the posterior means of the

¯i for the north and the south. Again, there is presence of an association pattern in the ¯i ’s,

but connection of their magnitudes with associated population sizes is weak.

Last, we examine the implicit imputation of population from town to pixel level. At

the 4-km £ 4-km resolution, in Figure 11, we provide a gray-scale rasterized imputed

population map on the square-root scale for the north and the south. These maps were de-

veloped by obtaining the posterior means of the Pij ’s under model 2 and then converting

Figure 9. Land-use model spatial random effects.
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Figure 10. Population model spatial random effects.

to a gray scale. As a form of informal model checking, we obtained Figure 12 to compare
with Figure 11. Figure 12 (not developed by us) offers crude spatial information about the
distribution or clustering of populationswithin towns. In particular, villages are denoted by
dots, with dot size re�ecting village size. The distribution of villages varies greatly across
towns, the population ranges associated with dot sizes are not necessarily good choices,
and there is, of course, population apart from that in the villages. Nonetheless, our imputed

populations do match reasonably well.

5. EXTENSIONS

The foregoing analysis is still rather preliminary, as the dataset is in an ongoingprocess
of re�nement.Here we mentionsome additionalwork we plan to do and howit can be carried
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out within the modeling framework described in Section 3.

First, we are re�ning the land-use classi�cation. We will eventually obtain �ve ordinal
classi�cations ranging from severely degraded (L = 1) to pristine forest (L = 5) . Follow-
ing the ideas in Albert and Chib (1993), we can introduce a latent variable Wij associated
with each Lij . Wij is a conceptual continuousrandom variable on R1, interpreted as (trans-
formed) extent of forest cover. Then Lij = l if Wij 2 (®l¡1; ®l) , l = 1; : : : ; 5, where
®0 = ¡1; ®5 = 1. For identi�ability, we can set the cut point ®1 = 0.

Second, we wish to introduce additional explanatory variables. Here there are two
possibilities. In one case, the covariate may be de�nable at the pixel level. For instance,

Figure 11. Imputed population (on the square-root scale) for the pixel level for north and south regions.
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NORTH
SOUTH

Figure 12. Populationdistribution for the north and south regions by village. Dots denote villages; dot size re�ects
village size.

roads and rivers might be expected to in�uence land use. A vectorized map of the road

network for a region can be converted to a pixel-level road classi�cation in various ways.
Our approach will �rst de�ne an ordinal classi�cation for roads ranging from an ox cart
path to a main highway. Then the level assigned to a pixel will be the classi�cation of the
most developed road found in the pixel. A similar approach can handle hydrology.

In the other case, the covariate may introduce an additionalmisaligned data layer. This
will be the situation for various socioeconomic and historical variables that may also be of
interest with regard to land use. For such variables, again, we propose rasterization of the
associated areal units to the pixel level, introducing analogues of (3.2) into the modeling.
Careful attentionto detailwill be criticalhere since a givenpixelwill havea different labeling

under each rasterization. Look-up tables will need to be created to align the labelings. Edge
effects, i.e., pixels in one set of areal units but not in another, must be handled as well [see
Mugglin, Carlin, and Gelfand (2000) for related discussion].

APPENDIX: DESCRIPTION OF DATA LAYERS

The town boundary maps and census information were obtained from the United
Nations Statistics Division (UNSD) via their software package PopMap for Windows
4.1, which can be downloaded directly from the Web http://www.undp.org/popin/softproj/
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software/popmap.htm. The census data were compiled by Direction de la Demographie et

Statistiques Sociales of Madagascar and were made available together with town bound-
ary coverages for all of Madagascar by the United Nations Population Fund (UNFPA), the
United NationsDepartment for Economicaland Social Affairs (UNDESA), and UNSD. The
GIS coverage of towns (�raisana) and census data for Toamasina (160 towns in total) were
exported from PopMap as a vector shape�le in geographic projection in decimal degrees,
World Geodetic System 1984 (www.wgs84.com).

Elevation data for Madagascar were obtained from the USGS Global 30 Arc Second
Elevation Data Set for the world http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.

html from tile E020S10. The sources of the elevation data for Madagascar are both the
DigitalChart of the World (DCW) and the DigitalTerrain ElevationData (DTED). Details of
the meta-data are provided at this Web site. Unfortunately, these two different data sources,
tiled together by USGS for the coverage of Madagascar, have different levels of accuracy.
The data were downloaded as a raster grid �le in geographic projection as decimal degrees,
World Geodetic System 1984, with a pixel resolution of 1 km and elevation expressed to
the nearest meter for each pixel. Slope was subsequently derived from this data layer as
described below.

Vegetation cover for Madagascar was obtained from the USGS Global Land Cover

Characterization for Africa http://edcwww.cr.usgs.gov/landdaac/glcc/af int.html. This site
provides a seasonal land-cover interpretation for 197 cover types for all of Africa with
nominal 1-km resolution. The land-cover classi�cation was based on 1-km AVHRR NDVI
monthly composite images spanning April 1992 through March 1993. Data were down-
loaded as a raster image �le.

A fourth GIS coverage was used as a template to which the other data layers were geo-
corrected.This is thePrimary Vegetationmap of Madagascar, a vectorcoveragethat hasbeen
reproduced and is available from several different sources. We downloaded this coverage
from the Royal Botanical Gardens, Kew web site http://www.rbgkew.org.uk/herbarium/

madagascar/veg mapping.html. Based on available GIS map layers for Madagascar, we
judged this to provide the most accurate outline projection coverage, more accurate that the
town-level vector coverage.We downloaded this as a vectorshape�le, geographicprojection
in decimal degrees, World Geodetic System 1984.

The town-level vector coverage was geocorrected to the Primary Vegetation vector
coverage in IDRISI (Version 2) using at least 20 control points. The raster elevation and
landcover GIS layers were cut to a rectangular area that includes Toamasina Province and
the towns it contains. These raster layers were reprojected and geocorrected to the Primary

Vegetation vector coverage in ERDAS Imagine (Version 8.1). Slope was obtained from the
raster grid elevation coverage directly via the Spatial Analyst module of ESRI ArcView
3.1. The landcover raster layer was reclassi�ed to forest and nonforest. This was achieved
by lumping all rainforest classes into a single forest class and all other classes, including
degraded rainforest,woodlands,savanna, cropland, etc., as nonforest.The town-level vector
coverage was converted to a raster 1-km grid coverage in ArcView. In so doing, one town
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was deleted from the data set as a consequence of being less than 1 km2. The total number

of towns was thus 159. All layers were exported to ERDAS Imagine converted to UTM
zone 30, spheroid projection,Clark 1866 datum, in meter units. In the �nal raster layers, we
deleted from the data set all coastal islands. These data layers were subsequently exported
as a single ASCII �le, with pixel coordinates (center) in UTM meters, and associated with
each pixel town identity, 1993 population size, elevation (m), slope (%), and landcover (1
= forest, 0 = not forest). The total number of pixels in this �le was 74,607.
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